首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   43篇
  国内免费   4篇
测绘学   32篇
大气科学   48篇
地球物理   224篇
地质学   269篇
海洋学   134篇
天文学   177篇
综合类   6篇
自然地理   51篇
  2023年   4篇
  2021年   10篇
  2020年   16篇
  2019年   8篇
  2018年   22篇
  2017年   23篇
  2016年   22篇
  2015年   16篇
  2014年   25篇
  2013年   51篇
  2012年   26篇
  2011年   37篇
  2010年   33篇
  2009年   45篇
  2008年   34篇
  2007年   32篇
  2006年   40篇
  2005年   23篇
  2004年   27篇
  2003年   27篇
  2002年   20篇
  2001年   16篇
  2000年   20篇
  1999年   13篇
  1998年   20篇
  1997年   12篇
  1996年   10篇
  1995年   10篇
  1994年   12篇
  1993年   8篇
  1992年   17篇
  1991年   10篇
  1989年   6篇
  1988年   5篇
  1987年   13篇
  1986年   7篇
  1985年   21篇
  1984年   32篇
  1983年   15篇
  1982年   15篇
  1981年   22篇
  1980年   13篇
  1979年   10篇
  1978年   13篇
  1977年   10篇
  1976年   13篇
  1975年   11篇
  1974年   7篇
  1973年   11篇
  1971年   5篇
排序方式: 共有941条查询结果,搜索用时 250 毫秒
1.
Enhanced production of unconventional hydrocarbons in the United States has driven interest in natural gas development globally, but simultaneously raised concerns regarding water quantity and quality impacts associated with hydrocarbon extraction. We conducted a pre‐development assessment of groundwater geochemistry in the critically water‐restricted Karoo Basin, South Africa. Twenty‐two springs and groundwater samples were analyzed for major dissolved ions, trace elements, water stable isotopes, strontium and boron isotopes, hydrocarbons and helium composition. The data revealed three end‐members: a deep, saline groundwater with a sodium‐chloride composition, an old, deep freshwater with a sodium‐bicarbonate‐chloride composition and a shallow, calcium‐bicarbonate freshwater. In a few cases, we identified direct mixing of the deep saline water and shallow groundwater. Stable water isotopes indicate that the shallow groundwater was controlled by evaporation in arid conditions, while the saline waters were diluted by apparently fossil meteoric water originated under wetter climatic conditions. These geochemical and isotopic data, in combination with elevated helium levels, suggest that exogenous fluids are the source of the saline groundwater and originated from remnant seawater prior to dilution by old meteoric water combined with further modification by water‐rock interactions. Samples with elevated methane concentrations (>14 ccSTP/kg) were strongly associated with the sodium‐chloride water located near dolerite intrusions, which likely provide a preferential pathway for vertical migration of deeply sourced hydrocarbon‐rich saline waters to the surface. This pre‐drill evaluation indicates that the natural migration of methane‐ and salt‐rich waters provides a source of geogenic contamination to shallow aquifers prior to shale gas development in the Karoo Basin.  相似文献   
2.
This Commentary reflects on the state of the scholarship on learning for environmental and natural resource policy and governance. How have we been learning about learning? We highlight theoretical and empirical advancements related to learning, as well as areas of divergence between learning theories and frameworks, and underdeveloped knowledge around processes and outcomes. To address these limitations and improve progress in both theory and practice, we offer recommendations for learning scholarship by focusing on how to collectively engage in ‘learning about learning’.  相似文献   
3.
The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation systems have been systematically applied to the mesoscale circulation environment of the California Current to demonstrate the performance and practical utility of the various components of ROMS 4D-Var. In particular, we present a comparison of three approaches to 4D-Var, namely: the primal formulation of the incremental strong constraint approach; the dual formulation “physical-space statistical analysis system”; and the dual formulation indirect representer approach. In agreement with theoretical considerations all three approaches converge to the same ocean circulation estimate when using the same observations and prior information. However, the rate of convergence of the dual formulation was found to be inferior to that of the primal formulation. Other aspects of the 4D-Var performance that relate to the use of multiple outer-loops, preconditioning, and the weak constraint are also explored. A systematic evaluation of the impact of the various components of the 4D-Var control vector (i.e. the initial conditions, surface forcing and open boundary conditions) is also presented. It is shown that correcting for uncertainties in the model initial conditions exerts the largest influence on the ability of the model to fit the available observations. Various important diagnostics of 4D-Var are also examined, including estimates of the posterior error, the information content of the observation array, and innovation-based consistency checks on the prior error assumptions. Using these diagnostic tools, we find that more than 90% of the observations assimilated into the model provide redundant information. This is a symptom of the large percentage of satellite data that are used and to some extent the nature of the data processing employed. This is the second in a series of three papers describing the ROMS 4D-Var systems.  相似文献   
4.
Exploration and development of offshore hydrocarbon resources has advanced into remote deepwater regions over the last decade and poses significant technical challenges for the design and installation of wells and facilities at extreme water depths. Seafloor and shallow subsurface processes and conditions in these areas are complex and generally poorly understood, and the geohazards to development are larger scale and fundamentally different to those encountered onshore; consequently the geohazard risk to deepwater development projects is potentially significant and requires careful evaluation and mitigation during the front-end planning and engineering design stages of projects. There are no established industry standards or methods for the assessment of geohazards and engineering-quality geophysical data at the scale of development. The paper describes an integrated and systematic map-based approach for the assessment and mitigation of seabed geohazards and risk to proposed deepwater development. The approach employs a multi-disciplinary team working with engineering-quality field calibrated data to accurately map and assess seafloor ground conditions and ensure that development proposals are not exposed to intolerable geohazard risk. The approach taken is very similar to the practice of establishing geological models for land-based engineering projects, in which the complete geological history of the site is used to characterise and predict the performance of the ground. Such an approach is routine for major projects on land but so far does not seem to be common practice in the offshore industry. The paper illustrates the seafloor geomophological mapping approach developed. The products are being used to optimise development layouts to avoid geohazards where possible and to support site-specific engineering design of facilities based on a detailed understanding of the potential geohazard loadings and associated risk.  相似文献   
5.
The spin up and relaxation of an autumn upwelling event on the Beaufort slope is investigated using a combination of oceanic and atmospheric data and numerical models. The event occurred in November 2002 and was driven by an Aleutian low storm. The wind field was strongly influenced by the pack-ice distribution, resulting in enhanced winds over the open water of the Chukchi Sea. Flow distortion due to the Brooks mountain range was also evident. Mooring observations east of Barrow Canyon show that the Beaufort shelfbreak jet reversed to the west under strong easterly winds, followed by upwelling of Atlantic Water onto the shelf. After the winds subsided a deep eastward jet of Atlantic Water developed, centered at 250 m depth. An idealized numerical model reproduces these results and suggests that the oceanic response to the local winds is modulated by a propagating signal from the western edge of the storm. The disparity in wave speeds between the sea surface height signal—traveling at the fast barotropic shelf wave speed—versus the interior density signal—traveling at the slow baroclinic wave speed—leads to the deep eastward jet. The broad-scale response to the storm over the Chukchi Sea is investigated using a regional numerical model. The strong gradient in windspeed at the ice edge results in convergence of the offshore Ekman transport, leading to the establishment of an anti-cyclonic gyre in the northern Chukchi Sea. Accordingly, the Chukchi shelfbreak jet accelerates to the east into the wind during the storm, and no upwelling occurs west of Barrow Canyon. Hence the storm response is fundamentally different on the Beaufort slope (upwelling) versus the Chukchi slope (no upwelling). The regional numerical model results are supported by additional mooring data in the Chukchi Sea.  相似文献   
6.
The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction of surface heat fluxes indicate that, given the ocean model used and its potential limitations, the heat flux data from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) used to impose surface conditions in the model are generally too low except in spring-summer, in the upwelling region, where they are too high. Comparisons with independent data provide confidence in the resulting forecast ocean circulation on timescales ~14 days, with less than 1.5 °C, 0.3 psu, and 9 cm RMS error in temperature, salinity and sea surface height anomaly, respectively, compared to observations.  相似文献   
7.
Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2σ) to +0.34 ± 0.17‰ (2σ) at the lowest horizons and from +0.38 ± 0.45‰ (2σ) to +0.76 ± 0.14‰ (2σ) near the surface. The δ66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe2O4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ66Zn values of +0.81 ± 0.20‰ (2σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.  相似文献   
8.
The 2006 western Java tsunami deposited a discontinuous sheet of sand up to 20 cm thick, flooded coastal southern Java to a depth of at least 8 m and inundated up to 1 km inland. In most places the primarily heavy mineral sand sheet is normally graded, and in some it contains complex internal stratigraphy. Structures within the sand sheet probably record the passage of up to two individual waves, a point noted in eyewitness accounts. We studied the 2006 tsunami deposits in detail along a flow parallel transect about 750 m long, 15 km east of Cilacap. The tsunami deposit first becomes discernable from the underlying sediment 70 m from the shoreline. From 75 to 300 m inland the deposit has been laid down in rice paddies, and maintains a thickness of 10–20 cm. Landward of 300 m the deposit thins dramatically, reaching 1 mm by 450 m inland. From 450 m to the edge of deposition (around 700 m inland) the deposit remains <1 mm thick. Deposition generally attended inundation—along the transect, the tsunami deposited sand to within about 40 m of the inundation limit. The thicker part of the deposit contains primarily sand indistinguishable from that found on the beach 3 weeks after the event, but after about 450 m (and roughly coinciding with the decrease in thickness) the tsunami sediment shifts to become more like the underlying paddy soil than the beach sand. Grain sizes within the deposit tend to fine upward and landward, although overall upward fining takes place in two discrete pulses, with an initial section of inverse grading followed by a section of normal grading. The two inversely graded sections are also density graded, with denser grains at the base, and less dense grains at the top. The two normally graded sections show no trends in density. The inversely graded sections show high density sediment to the base and become less dense upward and represents traction carpet flows at the base of the tsunami. These are suggestive of high shear rates in the flow. Because of the grain sorting in the traction carpet, the landward-fining trends usually seen in tsunami deposits are masked, although lateral changes of mean sediment grain size along the transect do show overall landward fining, with more variation as the deposit tapers off. The deposit is also thicker in the more seaward portions than would be produced by tsunamis lacking traction carpets.  相似文献   
9.
This study maps the geographic extent of intermittent and seasonal snow cover in the western United States using thresholds of 2000–2010 average snow persistence derived from moderate resolution imaging spectroradiometer snow cover area data from 1 January to 3 July. Results show seasonal snow covers 13% of the region, and intermittent snow covers 25%. The lower elevation boundaries of intermittent and seasonal snow zones increase from north-west to south-east. Intermittent snow is primarily found where average winter land surface temperatures are above freezing, whereas seasonal snow is primarily where winter temperatures are below freezing. However, temperatures at the boundary between intermittent and seasonal snow exhibit high regional variability, with average winter seasonal snow zone temperatures above freezing in west coast mountain ranges. Snow cover extent at peak accumulation is most variable at the upper elevations of the intermittent snow zone, highlighting the sensitivity of this snow zone boundary to climate conditions.  相似文献   
10.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号